

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Building physics				
			Course	
Field of study		Year/Semester		
SUSTAINABLE BUILDING	ENGINEERING	II/3		
Area of study (specializat	ion)	Profile of study	/	
		general acader	nic	
Level of study		Course offered	lin	
First-cycle studies		english		
Form of study		Requirements		
full-time		compulsory		
			Number of	
hours				
Lecture	Laboratory cl	sses Other (e.g. o	online)	
30				
Tutorials Projects/semin		nars		
15				
Number of credit points				
3				
			Lecturers	
Responsible for the cours	se/lecturer:	Responsible for the course/lec	turer:	
Małgorzata Basińska, prof. assistent		Andrzej Górka, phD		
e-mail: malgorzata.basinska@put.poznan.pl		e-mail: andrzej.gorka@put.poznan.pl		
Faculty of Environmental Engineering		Faculty of Environmental Engineering		
Poznan University of Technology		Poznan University of Technology		
Institute of Environmental Engineering and Building Installations		Institute of Environmental Engineering and Building Installations		
Piotrowo Str. 5, 60-965 Poznań		Piotrowo Str. 5, 60-965 Poznań		
tel. *48 61 6475824		tel. *48 61 6475825		
			Prerequisites	

Knowledge:

- basic knowledge of mathematics, physics

- basic knowledge of Building Construction and Building Materials

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- Skills:
- use the available sources of information
- identify and describe building materials and their basic physical characteristics
- can present layers of individual building partitions

Social competencies

- awareness of the need to constantly update and supplement building knowledge and engineering skills
- he can work on a task independently and collaborate in a team

Course objective

Acquisition by the student of theoretical and practical knowledge of basic concepts and selected issues that are necessary for the proper design and construction of buildings – heat and mass exchange in building partitions and energy balance of residential buildings

Course-related learning outcomes

Knowledge

He/she is familiar with commonly used construction and installation materials and their properties (KSB_W14)

He/she knows basics of construction physics in terms of heat and humidity migration in building components and in construction works (KSB_W13)

He/she Has basic knowledge in the area of formation of building components in terms of thermal performance, humidity (KSB_W05)

He/she has knowledge in areas of acoustics (KSB_W01)

Skills

He/she can define the basic concepts of heat transfer and energy balance of a building (KSB_U01)

He/she can explain: the course of basic thermal phenomena in building components (KSB_U03)

He/she can calculate the basic thermal and energy characteristics necessary for the design of buildings partitions and buildings (KSB_U14)

He/she can make calculations to avoid condensation on the surface of the building barrier (KSB_U03)

Social competences

He/she can estimate the impact of modification of building structures on the course of thermal phenomena (KSB_K01)

Is able to interpret and apply building standards and regulations in the field of thermal and energy issues and is able to qualify whether these requirements are met (KSB_K02)

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

He/she can discuss the thermal properties and energy parameters of building objects (KSB_K02)

Methods for verifying learning outcomes and assessment criteria Learning outcomes presented above are verified as follows: Lecture:

Exam in an exam session. Multiple choice test.

Rating: Skala: 51-60% - 3,0 61-70% - 3,5 71-80% - 4,0 81-90% - 4,5 91-100% - 5,0

Tutorials:

Final test in the last class. 3 open tasks rated on a scale of 10 points each.

Rating: 51-60% - 3,0 61-70% - 3,5 71-80% - 4,0 81-90% - 4,5 91-100% - 5,0

Programme content

Lecture:

- Basic terms of thermal physics of the building
- Thermal conductivity in the building materials. Fourier law. Convection. Radiation.
- Hygrothermal properties of the typical building materials
- Steady-state thermal conductivity through the multi-layer building partitions. Thermal resistance and heat transfer coefficient. Simple analysis of steady-state thermal conductivity by the complex elements of the building partitions
- Transparent partitions. Selective gain of solar radiation energy
- Requirements regarding the thermal protection of the buildings. Rules of the building partitions designing
- Thermal bridges
- Basics of moisture exchange in the building
- Internal microclimate. The conditions in the premises during winter or summer
- Thermal comfort. Characteristic of climate of Poland
- Thermovision detection of thermal defects in the building envelope
- Building acoustics (acoustic parameters of the interior, parameters of the acoustic quality evaluation of the room)

Tutorials:

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

• Calculation of thermal insulation and temperature distribution in multilayer building partitions: wall, roof and ground floor

- Determining the required thickness of partitions insulation
- Determination of zero isotherm and felt temperature
- Calculations regarding the heat exchange of the building with the ground
- Calculations of thermal insulation of windows
- Calculations of the fRsi coefficient of the external partitions
- Final test

Teaching methods

Informative lecture with seminar elements, lecture with multimedia presentation

Tutorials- exercise method

Bibliography

Basic

Yunus A. Cengel. Heat transfer: A practical approach. International edition. McGRAW-HILL. 2003.

Faye C. McQuiston. Heating, Ventilating, and Air Conditioning. Analysis and design. John Wiley & Sons, Inc.

Fanger P. O. Thermal Comfort. Analysis and Applications in Environmental Engineering. McGraw-Hill Inc., US. 1973.

ASHRAE Handbook. Fundamentals. SI Edition.

Additional

Neufert. Podręcznik projektowania architektoniczno-budowlanego. Wyd. Arkady. 2011.

Praca zbiorowa pod kier. P. Klemma. Budownictwo ogólne. Tom 2. Wyd. Arkady. 2005.

Płoński, Pogorzelski. Fizyka budowli. Arkady. 1976.

Laskowski L. Ochrona cieplna i charakterystyka energetyczna budynku. Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa. 2005.

Aktualne normy.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,0
Classes requiring direct contact with the teacher	45	2
Student's own work (literature studies, preparation for	15	1
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate